metadata: name: emdetector namespace: cvat annotations: name: EM14 v1 type: detector framework: pytorch spec: | [ { "id": 0, "name": "EM14", "type": "rectangle" }, { "id": 1, "name": "EM18", "type": "rectangle" }, { "id": 2, "name": "EM17", "type": "rectangle" }, { "id": 3, "name": "EM170", "type": "rectangle" }, { "id": 4, "name": "EM19", "type": "rectangle" }, { "id": 5, "name": "EM190", "type": "rectangle" }, { "id": 6, "name": "EM20", "type": "rectangle" }, { "id": 7, "name": "EM200", "type": "rectangle" }, { "id": 8, "name": "EM201", "type": "rectangle" }, { "id": 9, "name": "EM202", "type": "rectangle" }, { "id": 10, "name": "EM203", "type": "rectangle" } ] spec: description: 工位检测 runtime: "python:3.9" handler: main:handler eventTimeout: 30s build: image: cvat.pth.yolo8.emdetector:latest-gpu baseImage: python:3.9 directives: preCopy: - kind: ENV value: DEBIAN_FRONTEND=noninteractive - kind: RUN value: apt-get update && apt-get install -y libgl1 libglib2.0-0 && apt-get clean - kind: RUN value: pip install ultralytics torch torchvision opencv-python-headless && pip cache purge triggers: myHttpTrigger: numWorkers: 1 kind: 'http' workerAvailabilityTimeoutMilliseconds: 10000 attributes: # Set value from the calculation of tracking of 100 objects at the same time on a 4k image maxRequestBodySize: 268435456 # 256MB volumes: - volume: name: model-volume hostPath: path: /DATA/wjl/cvat/models/best.pt # 可选:如果使用HostPath挂载模型 volumeMount: name: model-volume mountPath: /opt/nuclio/best.pt resources: limits: nvidia.com/gpu: 1 platform: attributes: restartPolicy: name: always maximumRetryCount: 3 mountMode: volume